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Abstract
The notions of reflection from outside, reflection from inside and signature of
a billiard trajectory within a quadric are introduced. Cayley-type conditions
for periodical trajectories for the billiard in the region bounded by k quadrics
in R

d and for the billiard ordered game within k ellipsoids in R
d are derived.

In a limit, the condition describing periodic trajectories of billiard systems on
a quadric in R

d is obtained.

PACS numbers: 45.05.+x, 02.30.Hq

1. Introduction

We study periodic trajectories of the following well-known integrable mechanical system:
motion of a free particle within an ellipsoid in the Euclidean space of any dimension d. On
the boundary, the particle respects the billiard law. To be more precise, let us mention some
basic notions.

Let (Q, g) be a d-dimensional Riemannian manifold and D ⊂ Q be a domain with a
piecewise smooth boundary B. Let π : T ∗Q → Q be a natural projection and g−1 the
contravariant metric on the cotangent bundle.

Consider the reflection mapping r : π−1B → π−1B, p− �→ p+, which associates the
covector p+ ∈ T ∗

x Q, x ∈ B with a covector p− ∈ T ∗
x Q such that the following conditions

hold: |p+| = |p−|, p+ − p−⊥B.
A billiard in D is a dynamical system with the phase space M = T ∗D whose trajectories

are geodesics given by the Hamiltonian H(p, x) = g−1
x (p, p)/2, reflected at points x ∈ B

according to the billiard law: r(p−) = p+. Here p− and p+ denote the momenta before and
after the reflection.

Integrability of the billiard system within quadrics is related to classical geometrical
properties: the Chasles, Poncelet and Cayley theorems. From the Chasles theorem [1] every
1 On leave at SISSA, Via Beirut 2-4, Trieste, Italy.
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line in R
d is tangent to d − 1 quadrics confocal to the boundary; all segments of one billiard

trajectory are tangent to the same d − 1 quadrics [2]. We refer to these d − 1 quadrics as
caustics of the given trajectory.

From now on, we consider a billiard with a boundary which consists of the union of
k confocal quadrics in R

d . According to the generalized Poncelet theorem [3], with k, d

arbitrary, there exists a closed trajectory with d − 1 given confocal caustics if and only if
infinitely many such trajectories exist, and all of them have the same period. The periodicity
of a billiard trajectory depends on its caustic surfaces. An important question is to find an
analytical connection between them and the corresponding period.

In [4], Cayley found the analytical condition for caustic conics in the Euclidean plane
case (d = 2) with k = 1 conic as a boundary. The classical and algebro-geometric proofs of
Cayley’s theorem can be found in Lebesgue’s book [5] and paper [6], respectively. Moreover,
in [5] the complete Poncelet theorem for billiard systems in a plane (d = 2) within k conics,
with k arbitrary, was proved (see also [7]).

The generalization of Cayley’s condition for k = 1 is established by the authors for any
dimension d [8], by use of the Veselov–Moser discrete L–A pair [9].

The main goal of this paper is to give Cayley-type conditions describing periodic
trajectories of the billiard in the region bounded by k confocal quadrics in R

d and of the
billiard ordered game within k ellipsoids in R

d , for k, d arbitrary. The importance of these
questions was underlined several times by experts; let us mention Arnol’d (see [1, 10]), for
example, in connection with applications in laser technology. In a limit case, we derive
analytic conditions for periodic billiard trajectories on a quadric in R

d bounded by any
finite number of quadrics, solving in this way a problem explicitly posed by Abenda and
Fedorov [11].

2. Planar case: d = 2, k arbitrary

The derivation of Cayley-type conditions for the billiard in a plane within k conics can be
done following Lebesgue. In [5], he considered polygons inscribed in a conic �, whose sides
are tangent to �1, . . . , �k , where �,�1, . . . , �k all belong to a pencil of conics. In the dual
plane, such polygons correspond to billiard trajectories having caustic �∗ with bounces on
�∗

1 , . . . , �
∗
k . The main object of Lebesgue’s analysis in [5] was the cubic Cayley curve, which

parametrizes contact points of tangents drawn from a given point to all conics of the pencil.
We summarize Lebesgue’s results as follows. Let C and � be conics of a pencilF and �(x)

be the discriminant of the conic C + x� = 0. If λ1, . . . , λk denote parameters corresponding
to �1, . . . , �k , respectively, then the existence of the Poncelet polygon is equivalent to

det




1 λ1 λ2
1 . . . λ

p

1

√
�(λ1) λ1

√
�(λ1) . . . λ

p−2
1

√
�(λ1)

. . .

. . .

1 λk λ2
k . . . λ

p

k

√
�(λk) λk

√
�(λk) . . . λ

p−2
k

√
�(λk)


 = 0

for k = 2p

det




1 λ1 λ2
1 . . . λ

p

1

√
�(λ1) λ1

√
�(λ1) . . . λ

p−1
1

√
�(λ1)

. . .

. . .

1 λk λ2
k . . . λ

p

k

√
�(λk) λk

√
�(λk) . . . λ

p−1
k

√
�(λk)


 = 0

for k = 2p + 1.
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The case with two ellipses, when the billiard trajectory is placed between them and the
particle bounces from one to the other alternately, is of special interest.

Corollary 1. The condition for existence of a 2m-periodic billiard trajectory which bounces
exactly m times to the ellipse �∗

1 = C∗ and m times to �∗
2 = (C + γ�)∗, having �∗ for the

caustic, is

det




f0(0) f1(0) . . . f2m−1(0)

f ′
0(0) f ′

1(0) . . . f ′
2m−1(0)

. . .

f
(m−1)
0 (0) f

(m−1)
1 (0) . . . f

(m−1)
2m−1 (0)

f0(γ ) f1(γ ) . . . f2m−1(γ )

f ′
0(γ ) f ′

1(γ ) . . . f ′
2m−1(γ )

. . .

f
(m−1)
0 (γ ) f

(m−1)
1 (γ ) . . . f

(m−1)
2m−1 (γ )




= 0

where fj = xj (0 � j � m), fm+i = xi−1
√

�(x) (1 � i � m − 1).

We consider a simple example with four bounces on each of the two conics.

Example 1. The condition on a billiard trajectory placed between ellipses �∗
1 and �∗

2 , to be
closed after four alternating bounces to each of them is

det X = 0

where the elements of the 3 × 3 matrix X are

X11 = −4B0 + B1γ + 4C0 + 3C1γ + 2C2γ
2 + C3γ

3

X12 = −3B0 + B1γ + 3C0 + 2C1γ + C2γ
2

X13 = −2B0 + B1γ + 2C0 + C1γ

X21 = −6B0 + B2γ
2 + 6C0 + 6C1γ + 4C2γ

2 + 3C3γ
3

X22 = −6B0 + B1γ + B2γ
2 + 6C0 + 4C1γ + 3C2γ

2

X23 = −5B0 + 2B1γ + B2γ
2 + 5C0 + 3C1γ

X31 = −4B0 + B3γ
3 + 4C0 + 4C1γ + 4C2γ

2 + 3C3γ
3

X32 = −4B0 + B2γ
2 + B3γ

3 + 4C0 + 4C1γ + 3C2γ
2

X33 = −4B0 + B1γ + B2γ
2 + B3γ

3 + 4C0 + 3C1γ

with Ci and Bi being coefficients in the Taylor expansions around x = 0 and x = γ , respectively√
�(x) = C0 + C1x + C2x

2 + · · ·√
�(x) = B0 + B1(x − γ ) + B2(x − γ )2 + · · · .

3. Periodic billiard trajectories inside k confocal quadrics in R
d

The complete Poncelet theorem (CPT) was generalized to the case d = 3 by Darboux in [12]
in 1870. Higher-dimensional generalizations of CPT were obtained quite recently in [3]. The
main result of the present paper is the Cayley-type condition for generalized CPT for d � 3,
although obtained results can be applied immediately in the case d = 2.

Consider an ellipsoid in R
d

x2
1

a1
+ · · · +

x2
d

ad

= 1 a1 > · · · > ad > 0
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and a related system of Jacobian elliptic coordinates (λ1, . . . , λd) ordered by the condition

λ1 > λ2 > · · · > λd.

Any quadric from the corresponding confocal family is given by

Qλ :
x2

1

a1 − λ
+ · · · +

x2
d

ad − λ
= 1. (1)

Lemma 1. Suppose a line � is tangent to quadrics Qα1 , . . . , Qαd−1 from the family
(1). Then Jacobian coordinates (λ1, . . . , λd) of any point on � satisfy the inequalities
P(λs) � 0, s = 1, . . . , d, where

P(x) = (a1 − x) · · · (ad − x)(α1 − x) · · · (αd−1 − x).

Proof. Follows from [13]. �

Suppose that a bounded domain � ⊂ R
d is given such that its boundary ∂� lies in the

union of several quadrics from the family (1). Then, in elliptic coordinates, � is given by

β ′
1 � λ1 � β ′′

1 , . . . , β ′
d � λd � β ′′

d ,

where as+1 � β ′
s < β ′′

s � as for 1 � s � d − 1 and −∞ < β ′
d < β ′′

d � ad .
Consider a billiard system within � and let Qα1 , . . . ,Qαd−1 be caustics of one of its

trajectories. For any s = 1, . . . , d, the set �s of all values taken by the coordinate λs on the
trajectory is, according to lemma 1, included in �′

s = {λ ∈ [β ′
s , β

′′
s ] : P(λ) � 0}. By [14], the

set �′
s is a closed interval and coincides with �s. Denote [γ ′

s , γ
′′
s ] := �s = �′

s .
Note that the trajectory touches quadrics of any pair Qγ ′

s
,Qγ ′′

s
alternately. Thus, any

periodic trajectory has the same number of intersection points with each of them.

Theorem 1. A trajectory of the billiard system within � with caustics Qα1 , . . . ,Qαd−1 is
periodic with exactly ns points at Qγ ′

s
and ns points at Qγ ′′

s
(1 � s � d) if and only if

d∑
s=1

ns

(
A

(
Pγ ′

s

) − A
(
Pγ ′′

s

)) = 0 (2)

on the Jacobian of the curve

� : y2 = P(x) := (a1 − x) · · · (ad − x)(α1 − x) · · · (αd−1 − x).

Here A denotes the Abel–Jacobi map, where Pγ ′
s
, Pγ ′′

s
are points on � with coordinates

Pγ ′
s
= (

γ ′
s , (−1)s

√
P(γ ′

s )
)
, Pγ ′′

s
= (

γ ′′
s , (−1)s

√
P(γ ′′

s )
)

and, for any s, the sign of the square
root is the same for γ ′

s and γ ′′
s . The distribution of the signs for different values of s depends

on the choice of one of 2d−1 common tangent lines to the caustics from the initial point of the
trajectory.

Proof. Following Jacobi [15], let us consider the integrals
d∑

s=1

∫
dλs√
P(λs)

,

d∑
s=1

∫
λs dλs√
P(λs)

, . . . ,

d∑
s=1

∫
λd−1

s dλs√
P(λs)

over the polygonal line A1A2 . . . Ak+1, which represents a billiard trajectory, where k =
2(n1 + · · · + nd). The last integral is equal to the total length of the polygonal line, while
the others are equal to zero. Considering the behaviour of elliptic coordinates along each
segment of the trajectory, we calculate the values of the integrals and obtain that the condition
Ak+1 = A1 is equivalent to (2). �



Cayley-type conditions for billiards within k quadrics in R
d 1273

Our next step is to introduce a notion of bounces ‘from outside’ and ‘from inside’. More
precisely, let us consider an ellipsoid Qλ from the confocal family (1) such that λ ∈ (as+1, as)

for some s ∈ {1, . . . , d}, where ad+1 = −∞.
Observe that along a billiard ray which reflects at Qλ, the elliptic coordinate λi has a local

extremum at the point of reflection.

Definition 1. A ray reflects from outside at the quadric Qλ if the reflection point is a local
maximum of the Jacobian coordinate λs, and it reflects from inside if the reflection point is a
local minimum of the coordinate λs.

Let us remark that in the case when Qλ is an ellipsoid, the notions introduced in
definition 1 coincide with the usual ones.

Assume now that a k-tuple of confocal quadrics Qβ1 , . . . ,Qβk
from the confocal pencil

(1) is given. We consider a billiard system with trajectories having bounces at Qβ1 , . . . ,Qβk
,

respectively. Such a trajectory has d − 1 caustics from the same family (1). We additionally
assign to each trajectory the signature σ = (i1, . . . , ik) by the following rule:

is = +1 if the reflection at Qβs
is from inside

is = −1 if the reflection at Qβs
is from outside.

Suppose Qβ1 , . . . ,Qβk
are ellipsoids and consider a billiard ordered game with signature

σ = (i1, . . . , ik). In order that trajectories of such a game stay bounded, the following
condition has to be satisfied:

is = −1 ⇒ is+1 = is−1 = 1 and βs+1 < βs, βs−1 < βs.

(Here, we identify indices 0 and k + 1 with k and 1, respectively.)

Theorem 2. Given a billiard ordered game within k ellipsoids Qβ1 , . . . , Qβk
with signature

σ = (i1, . . . , ik). Its trajectory with caustics Qα1 , . . . ,Qαd−1 is k-periodic if and only if

k∑
s=1

is
(
A(Pβs

) − A(Pα)
)

is equal to a sum of several expressions of the form A
(
Pαp

) − A
(
Pαp′

)
on the Jacobian of

the curve � : y2 = P(x), where Pβs
= (βs, +

√
P(βs)), α = min{ad, α1, . . . , αd−1} and

Qαp
,Qαp′ are pairs of caustics of the same type.

When Qβ1 = · · · = Qβk
and i1 = · · · = ik = 1 we obtain the Cayley-type condition

for billiard motion inside an ellipsoid in R
d . Such periodic trajectories were described in [8]

using a different technique, based on a Veselov–Moser discrete Lax representation.
We are going to treat in more detail the case of billiard motion between two ellipsoids.

Proposition 1. The condition that there exists a closed billiard trajectory between two
ellipsoids Qβ1 and Qβ2 , which bounces exactly m times to each of them, with caustics
Qα1 , . . . ,Qαd−1 , is

rank




f ′
1

(
Pβ2

)
f ′

2

(
Pβ2

)
. . . f ′

m−d+1

(
Pβ2

)
f ′′

1

(
Pβ2

)
f ′′

2

(
Pβ2

)
. . . f ′′

m−d+1

(
Pβ2

)
. . .

. . .

f
(m−1)
1

(
Pβ2

)
f

(m−1)
2

(
Pβ2

)
. . . f

(m−1)
m−d+1

(
Pβ2

)




< m − d + 1.
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Here

fj = y − B0 − B1(x − β1) − · · · − Bd+j−2(x − β1)
d+j−2

xd+j−1
1 � j � m − d + 1

and y = B0 + B1(x −β1) + · · · is the Taylor expansion around the point symmetric to Pβ1 with
respect to the hyperelliptic involution of the curve �. (All notation is as in theorem 2.)

Example 2. Consider a billiard motion in the three-dimensional space, with ellipsoids Q0 and
Qγ as boundaries (0 < γ < a3) and caustics Qα1 and Qα2 . Such a motion closes after four
bounces from inside to Q0 and four bounces from outside to Qγ if and only if

rank X < 2.

The matrix X is given by

X11 = −3C0 + C1γ + 3B0 + 2B1γ + B2γ
2

X12 = −4C0 + C1γ + 4B0 + 3B1γ + 2B2γ
2 + B3γ

3

X21 = 6C0 − 3C1γ + C2γ
2 − 6B0 − 3B1γ − B2γ

2

X22 = 10C0 − 4C1γ − 10B0 − 6B1γ − 3B2γ
2 − B3γ

3

X31 = −10C0 + 6C1γ − 3C2γ
2 + C3γ

3 + 10B0 + 4B1γ + B2γ
2

X32 = −20C0 − 10C1γ − 4C2γ
2 + C3γ

3 + 20B0 + 10B1γ + 4B2γ
2 + B3γ

3

and the expressions

−
√

(a1 − x)(a2 − x)(a3 − x)(α1 − x)(α2 − x) = B0 + B1x + B2x
2 + · · ·

+
√

(a1 − x)(a2 − x)(a3 − x)(α1 − x)(α2 − x) = C0 + C1(x − γ ) + · · ·
are Taylor expansions around points x = 0 and x = γ , respectively.

Example 3. Using the same notation as in the previous example, let us consider trajectories
with four bounces from inside to each of Q0 and Qγ . The explicit condition for periodicity of
such trajectories is

rank X < 2

with

X11 = −4C0 + C1γ + 3B1γ + 2B2γ
2 + B3γ

3

X12 = −3C0 + C1γ + 3B0 + 2B1γ + B2γ
2

X21 = −6C0 + C2γ
2 + 6B0 + 6B1γ + 5B2γ

2 + 3B3γ
3

X22 = −6C0 + C1γ + C2γ
2 + 6B0 + 5B1γ + 3B2γ

2

X31 = −4C0 + C3γ
3 + 4B0 + 4B1γ + 4B2γ

2 + 3B3γ
3

X32 = −4C0 + C2γ
2 + C3γ

3 + 4B0 + 4B1γ + 3B2γ
2.

4. Periodic trajectories of billiards on quadrics in R
d

In [16] the billiard systems on a quadric E in R
d

x2
1

a1
+ · · · +

x2
d

ad

= 1 a1 > · · · > ad

are defined as limits of corresponding billiards within E , when one of the caustics tends to E .
The boundary of such a billiard consists of the intersection of E with certain confocal quadrics
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Qβ1 , . . . ,Qβk
. The question of a description of the periodic trajectories of these systems was

formulated as an open problem by Abenda and Fedorov [11].
By applying the limit procedure, from theorem 1, we obtain the following:

Theorem 3. A trajectory of the billiard system constrained to the ellipsoid E within
� : β ′

1 � λ1 � β ′′
1 , . . . , β ′

d−1 � λd−1 � β ′′
d−1, with caustics Qα1 , . . . ,Qαd−2 , is periodic

with exactly ns bounces at each of quadrics Qγ ′
s
,Qγ ′′

s
(1 � s � d − 2) if and only if

d−1∑
s=1

ns

(
A

(
Pγ ′

s

) − A
(
Pγ ′′

s

)) = 0

on the Jacobian of the curve

�1 : y2 = P1(x) := −x(a1 − x) · · · (ad − x)(α1 − x) · · · (αd−2 − x).

Here Pγ ′
s
, Pγ ′′

s
are the points on �1 with coordinates Pγ ′

s
= (

γ ′
s , (−1)s

√
P1(γ ′

s )
)
, Pβ ′′

s
=(

γ ′′
s , (−1)s

√
P1(γ ′′

s )
)

with [γ ′
s , γ

′′
s ] = {λ ∈ [β ′

s , β
′′
s ] : P1(λ) � 0}, 1 � s � d − 2.

In the same way as in the previous section, a billiard ordered game constrained to the
ellipsoid E within given quadrics Qβ1 , . . . ,Qβk

of the same type can be defined. The only
difference is that now the signature σ = (i1, . . . , ik) can be given arbitrarily, since trajectories
are bounded, lying on the compact hypersurface E . Denote by Qα1 , . . . , Qαd−2 the caustics of
a given trajectory of the game. Since quadrics Qβ1 , . . . , Qβk

are all of the same type, there
exist µ′, µ′′ in the set S = {a1, . . . , ad, α1, . . . , αd−2} such that β1, . . . , βk ∈ [µ′, µ′′] and
(µ′, µ′′) ∩ S is empty.

Associate with the game the following divisors on the curve �1:

Ds =




−Pµ′′ if is = is+1 = 1
0 if is = −is+1 = 1 βs < βs+1 or is = −is+1 = −1 βs > βs+1

Pµ′ − Pµ′′ if is = −is+1 = 1 βs > βs+1 or is = −is+1 = −1 βs < βs+1

Pµ′ if is = is+1 = −1

where Pµ′ and Pµ′′ are its branching points with coordinates (µ′, 0) and (µ′′, 0), respectively.

Theorem 4. Given a billiard ordered game constrained to E within quadrics Qβ1 , . . . , Qβk

with signature σ = (i1, . . . , ik). Its trajectory with caustics Qα1 , . . . ,Qαd−2 is k-periodic if
and only if

k∑
s=1

is
(
A(Pβs

) − A(Ds)
)

is equal to a sum of several expressions of the form A
(
Pαp

) − A
(
Pαp′

)
on the Jacobian of the

curve �1 : y2 = P1(x), where Pβs
= (βs, +

√
P1(βs)) and Qαp

,Qαp′ are pairs of caustics of
the same type.

Proposition 2. Consider the case d = 3 and a billiard system constrained to the ellipsoid E
with the boundary Qγ and caustic Qα, a3 < γ < α < a2. A trajectory is k-periodic if and
only if

rank




Cp+1 Cp+2 . . . C2p−2

Cp+2 Cp+3 . . . C2p−1

. . .

C2p C2p+1 . . . C3p−3


 < p − 2 k = 2p
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and

rank




Cp+1 Cp+2 . . . C2p−1

Cp+2 Cp+3 . . . C2p

. . .

C2p C2p+1 . . . C3p−2


 < p − 1 k = 2p + 1

where

y = C0 + C1

(
x̃ − 1

α − γ

)
+ C2

(
x̃ − 1

α − γ

)2

+ · · ·

is the Taylor expansion with respect to x̃ = 1/(α − x) around the point Pγ .

5. Conclusion

As an important historical remark, we would like to emphasize the significance of Darboux’s
contribution to the study of problems related to the generalized Poncelet theorem. The
impression is that his work in the field (see [12]) is completely unknown nowadays. We shall
present in another publication a more detailed overview of Darboux’s ideas with comparison
to the Lebesgue geometric approach and applications to separable perturbed problems
[17, 18].
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